skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raven, Morgan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Blue carbon ecosystems such as seagrass meadows, mangrove forests, and salt marshes are important carbon sinks that can store carbon for millennia. Recently, organic matter sulfurization and pyritization have been proposed as mechanisms of net carbon storage in blue carbon ecosystems. At our study site, organic sulfur that is resistant to acid hydrolysis (protokerogen) is an order of magnitude less abundant than pyrite sulfur, suggesting a dominance of pyritization over sulfurization. The C/N ratios and carbon isotope compositions suggest that nearly half of total organic carbon and ≥ 80% of protokerogen is composed of marsh plant material. Sediment protokerogen appears to be sulfurized based on its low δ34S values (− 10‰), abundance of disulfides, and higher S/C ratio (~ 1.0%) relative to potential biogenic sulfur sources. However, the interpretation of protokerogen δ34S values is complicated by the wide range in sulfur isotope compositions of marsh plants. Evidence for sulfurization occurs within the shallowest sediments across different vegetation zones, yielding consistent products, while pyritization appears to be more sensitive to alterations in sediment redox conditions. Based on organic sulfur and pyrite content, sulfurization may be a more spatially consistent process than pyritization, with implications for carbon storage. The relative abundance of pyrite and protokerogen organic sulfur indicates that pyritization is favored at our study site, but this is likely to vary across the spectrum of blue carbon ecosystems. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800–730 Ma) marine strata and represent the earliest evidence for testate (shell-forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X-ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light-colored, translucent appearance in transmitted light. 
    more » « less